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The time-dependent Vlasov–Boltzmann equation is analytically studied in mirror machines with
perpendicular injection. The atomic and collisional processes are taken into account, with their
explicit, rigorous forms. A uniform model is assumed by considering a square-well magnetic field
configuration, and the mirrors are represented by related boundary conditions on the ion distribution
function. It is shown that, the ion density increases from the initial value, drops by a certain amount,
then increases again up to its final value, around which it performs damped oscillations. ©1996
American Institute of Physics.@S1070-664X~96!01104-2#

I. INTRODUCTION

The concept of a steady-state density in neutral-beam-
injected mirror machines has been investigated extensively
during the last 30 yrs. The earlier works concentrated on the
Fokker–Planck treatment, involving nonlinear terms, and un-
avoidably ended up with numerical solutions.1–4 Some ana-
lytic solutions appeared in mid 1980s in a rather crude man-
ner, where the atomic processes were treated formally.5,6 The
more rigorous analytic treatment of the steady-state problem
has been published recently,7 where the associated atomic
and collisional processes were taken into account with their
explicit forms. The ion–ion angular scattering was neglected
due to the fact that the ion drag on electrons is the dominant
collisional process at low electron temperatures, leading to
the simplification of the collisional operator, hence facilitat-
ing the analytic treatment of the problem.

The ion density in such models is generally expected to
damp exponentially to a steady-state value~with no oscilla-
tions!, since the charge exchange process does not affect the
total number of ions, and the time evolution of the density is
therefore governed by the competition between the ioniza-
tion ~directly proportional to the density! and the loss
through the mirrors, which is proportional to density
squared. However, as it was first pointed out by Ryutov, there
exist kinetic effects that may lead to an instability. It is sus-
pected that the ionization may lead the loss of the ions, since
the latter is delayed by the time required for the ions to slow
down from the injection velocity to the loss cone boundary.
This may then deteriorate the balance between the source
and loss terms, giving rise to an instability. A kinetic descrip-
tion of plasma dynamics is therefore necessary to study the
stability of the steady state, subject to small-density pertur-
bations, varying in time with the characteristic scale of the
order of ion lifetime, in order to obtain a complete prediction
of the ion behavior.

The present goals designated for the mirror system are
somewhat diverted from being an ultimate fusion reactor to
mirror-based neutron generators, for material testing of the
first wall of tokamak reactors8 and other possible applica-
tions. This investigation is expected to contribute to the un-
derstanding of the dynamics of fast tritium or deuterium

components in different schemes of such generators as well.
It is also of interest from the general point of view, for in-
stance, the macroscopic description~in terms of density! of
systems, strongly in nonequilibrium within a time scale com-
parable with the intrinsic time of particle interactions.

First, rough approaches to this problem are presented in
Refs. 5 and 6, where stability analysis has been carried out
with constant and zero charge exchange rates, respectively.
In the present work, the problem is analyzed rigorously by
writing the time-dependent Vlasov–Boltzmann equation,
with the explicit expressions for the relevant collisional and
atomic processes. The model described in Ref. 7 is adopted
and the time-dependent solution for the ion distribution func-
tion is analytically obtained. Using this solution, the time
evolution of the ion density is illustrated from the moment
the neutral beam is injected. It is seen to evolve exponen-
tially during two consecutive time intervals in a sawtooth
manner, after which a relaxation to steady state through
damped oscillations prevails.

II. THEORY

The complete form of the Vlasov–Boltzmann equation
for the ion distribution function can be formally written as
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where f andM denote the ion distribution function and the
ion mass, respectively,j is the ion flux in velocity space due
to collisions, andQ~v! represents the source and loss terms
for ions with velocity v. In neutral-beam-injected mirrors,
the source terms consist of the ionization of the beam by the
electron impact and charge exchange with the ions. The loss
terms, on the other hand, consist of the neutralization of ions
due to charge exchange with the beam and the mirror losses.
As mentioned in the Introduction, the loss rate through the
mirrors will not be considered explicity in the termQ~v!, but
will be taken into account as a loss cone boundary, on the
surface of which the ion distribution drops to zero. Adopting
the expressions derived forj andQ~v! in Ref. 7 and letting
the magnetic field be in thez direction, Eq.~1! for the uni-
form model can be written asa!Permanent address: Institute of Nuclear Physics, Novosibirsk 90, Russia.
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wherevc5eB/Mc, e is the ion charge,B is the magnetic
field, w is the azimuthal angle,C is the same term defined in
Ref. 7,nb andn are the beam and plasma densities, respec-
tively, vb is the beam velocity,ve is the electron speed, and
finally si and sex are the electron impact ionization and
charge exchange cross sections, respectively. Due to the fact
that vc is usually much larger than the other frequencies
involved in Eq. ~2!, ]f /]w must be very small. Since the
variations withw are periodic, this can be possible only iff
consists of a large,w independent part~f 0! and a small
w-dependent part~f 1!, that is,

f ~v,t !5 f 0~v,t !1 f 1~v,t !,

where f 0~v,t!@f 1~v,t!. Using this expansion, the first-order
form of Eq. ~2! yields
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Adopting the spherical coordinates in velocity space, withw
remaining as the azimuthal angle, setting the beam velocity
arbitrarily in thex direction, and taking the average value of
the resulting form of Eq.~3! with respect tow, one obtains
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wherec(v,u,t)5v3f 0(v,u,t), C85C/n(t),

g~v,u!5E
0

2p

sex~ uv2vbu!uv2vbudw, ~5!

and

S~ t !5
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The dependence of each quantity involved in Eq.~4! on the
independent variables is illustrated explicity, to serve as a
reference for the proceeding analysis.

At this moment, two of the independent variables,v and
t, will be transformed to a set of new variables,t(t) and
u(v,t), via the relations

t~ t !5E
0

t

C8n~ t8!dt8 ~7!

and

u~v,t !5vet~ t !. ~8!

The corresponding form of Eq.~4! can be readily expressed
as
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The solution of the homogeneous part is

ch~u,u,t!5ch~u,u,0!expS 2
nb

2pC8
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dt8D .

Applying a standard technique, the variation of parameters,
by replacing,ch(u,u,0) with K(u,u,t), yields the following
expression for the complete solution of Eq.~9!:
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where

G~u,t!5expS 2
nb

2pC8
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The term in the curly brackets represents the envelope of the
function G(u,t). The instantt50 ~injection of the beam!
corresponds tot50, and it can be seen that, at this instant,
the second term in curly brackets is zero. The term,K(u,u,0)
should therefore represent the ions, initially present in the
system. This term, and hence the functionc~u,u,t! described
by Eq. ~10!, can be related to the initial distribution function
f 0(v,u,0), by noting that

K~u,u,0!5c~u,u,0!5u3f 0~u,u,0!,

where the fact thatu5v at t50 is used.
AlthoughK(u,u,0) is t independent, the dependence on

u leads to a dependence on timet, that is

K~v,u,t !5v3e3t~ t ! f 0~ve
t~ t !,u,0!.

This behavior implies a shift towardv;0 with time. For
instance, if the initial distribution is a localized function
around a velocityv* , given by

f 0~v,u,0!ad~v2v* !d~u2p/2!,
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then

K~v,u,t !av3e2t~ t !d~v2v* e2t~ t !!d~u2p/2!,

which illustrates that the initially existing ion distribution
shifts towardv;0 at later times, and should leave the system
at a certain instant.

After having devoted the necessary attention to the
meaning of the termK(u,u,0) in Eq. ~10!, we may now
evaluate the integral, involving the delta function, to obtain

c~u,u,t!5FK~u,u,0!1
d~u2p/2!S~ ln u/vb!

C8n~ ln u/vb!

3expS nb
2pC8

E
0

ln~u/vb! g~ue2t8!

n~t8!
dt8D GG~u,t!,

for 0,ln(u/vb),t, andc(u,u,t)5K(u,u,0); G(u,t) oth-
erwise. Noting that ln(u/vb)5ln(vet/vb)5t2ln(vb/v), the
expression above can be rewritten as
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~11!

where j5ln(vb/v). The expression above is valid for the
interval vbe

2t,v,vb ; otherwise only the first term on the
right-hand side survives. Equation~11! is actually an integral
equation forc(v,u,t), since it exists in the functionS and
the density terms on the right-hand side, as indicated by Eq.
~6! and the expression

n~ t !52pE f 0~v,u,t !v
2 sin u du

52pE
v0

` E
0

p c~v,u,t !
v

sin u du dv, ~12!

where v0 denotes the loss cone boundary.7 Equations~6!,
~11!, and ~12! therefore constitute a set of coupled integral
equations, to be solved simultaneously, for obtaining the time
evolution of the ion distribution function and density.

The difficulty to be encountered during this procedure
can be somewhat reduced by adopting Eq.~4! instead of Eq.
~6!. Multiplying each term in Eq.~4! by 2p sinu/v, integrat-
ing overu andv, and using Eq.~12!, yields

]n

]t
522pC8nE

0

p

c~v0 ,u,t !sin u du1nbn^s ive&.

~13!

It can easily be seen that, by substituting Eq.~11! into Eq.
~13! yields an equation, relating the functionS to the ion
density and its derivative with respect to time. Substituting
Eq. ~11! into Eq.~12! and using the relation described above
yield an equation, involving only the ion density and the
system parameters. Before proceeding in this prescribed di-
rection, further simplifications can be introduced by analyz-

ing the evolution of the ion density piecewise in time. Ac-
cording to the earlier discussions, it requires a certain time
for the initial distribution, represented byK(u,u,0), to shift
to the velocityv0, and a longer time for the distribution of
the beam particles to broaden down to the same velocity.
Therefore, the functionc(v0 ,u,t) in Eq. ~13! should remain
zero until a certain timet1, required for the termK(u,u,0),
to shift down to the velocityv0, and the ion density in the
time interval 0,t,t1 is given by

n~ t !5n~0!enb^s ive&t, ~14!

wheren~0! is the density att50. At the instantt1, there will
be a sudden drop in the ion density, since the particles rep-
resented byK(u,u,0) leave the system. The velocities of the
beam particles remain to be larger thanv0, and hence the ion
density continues to obey the time dependence given in Eq.
~14! for t.t1 , but has a different starting value, defined by
the sudden drop. This behavior ends at a certain instantt2
(t2.t1), representing the time required for the beam distri-
bution to broaden down to the velocityv0, since the function
c(v0 ,u,t) in Eq. ~13! becomes effective for the time range
t.t2 . After having described the first two phases of the den-
sity evolution, we shall now concentrate on the remaining
phaset.t2 , to investigate the stability.

According to the prescribed procedure, Eq.~11! will be
substituted into Eq.~13! first. However, it should be noted
that for the ranget.t2 , the first term on the right-hand side
does not exist anymore, since the original ions have already
left the system. This is the major simplification, provided by
the piecewise analysis in time. The substitution mentioned
above yields

]n

]t
522pn

S@t~ t !2t0#

n@t~ t !2t0#
expS 2

nb
2pC8

3E
t~ t !2t0

t~ t ! g~v0e
t~ t !2t8!

n~t8!
dt8D 1nbn^s ive&,

where t05ln(vb/v0). Since the right-hand side of this ex-
pression is essentially in terms oft, it is convenient to write
the left-hand side in terms of the same variable as well. This
manipulation gives
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2
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•expS 2
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2pC8
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dt8D . ~15!

It should be noted thatt.t0 for the corresponding range
t.t2 . Now, Eq. ~11! is substituted into Eq.~12!, with the
first term on the right-hand side being zero again, and the
resulting expression can be written in terms of the variablet
as

n~t!5
2p

C8
E
0

t0 S~t2j!

n~t2j!
expS 2

nb
2pC8

3E
t2j

t g~vbe
t2j2t8!

n~t8!
dt8D dj. ~16!

1663Phys. Plasmas, Vol. 3, No. 5, May 1996 V. Mirnov and O. Demokan

Downloaded¬10¬Jan¬2005¬to¬128.104.223.90.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pop.aip.org/pop/copyright.jsp



Replacingt by t1t02j in Eq. ~15! yields
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Evaluating the ratioS(t2j)/n(t2j) from Eq. ~17! and
substituting into Eq.~16!, one obtains
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The above equation describes the evolution of the ion
density fort.t2 or t.t0, that is, after the initially existing
ions have left the system, and the beam distribution has
broadened down to the loss cone boundary. In this sense, it
describes the long time behavior of the system, and can be
used for the linear analysis of the stability. Assuming that a
steady-state value of the densityn0 exists, we shall iteraten
in Eq. ~18! around this value, by letting

n~t!5n01n1~t!, ~n1!n0!.

Substituting into Eq.~18!, the zeroth, and first-order equa-
tions can be written as
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At this moment it should be noted that, by changing vari-
ables in Eq.~19! the t dependence dissappears, and the re-
sulting expression corresponds exactly to the integration of
the steady-state ion distribution function, obtained in Ref. 7.

Letting j5t02x andt85t1y, Eq. ~20! can be rewritten
as
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where
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x
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It can be easily illustrated that the double integral can be
rearranged, so that Eq.~21! takes the following form;
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Since]n1(t1x)/]t can be written as]n1(t1x)/]x, the first
term on the right-hand side can be integrated by parts to
yield
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Interchangingx with y in the first term on the right-hand side
and combining the two integrals, one finally obtains

n1~t1t0!5E
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where
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which is a known function, determined by the system param-
eters.

To obtain the time evolution of the perturbation density
n1, the Fourier representation will be used;

n1~t!5~2p!21/2E
2`

`

nve
2 ivt dv.

Substitution into Eq.~24! yields the dispersion relation,

e2 ivt05E
0

t0
H~y!e2 ivy dy. ~26!

It is prohibitively difficult to solve forv analytically, with
the existing form of the functionH(y). At this stage we shall
resort to the typical ranges of the parameters involved. For
such ranges, it was shown7 that the functiong remains al-
most constant, and consequently

n05
gnbt0

2pC8 ln@11~g/2p^s ive&!#
.
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Using the fact thatg;const and the expression above in Eqs.
~22! and ~25! yields

H~y!5
2p^s ive&

gt0
lnS 11

g

2p^s ive&
D

3H expF yt0 lnS 11
g

2p^s ive&
D G21J . ~27!

Substituting into Eq.~26!, one obtains

2

l
5V21 i

V2

tan~V/2!
, ~28!

whereV5vt0 and

l5
g

2p^s ive& ln
2@11~g/2p^s ive&!#

.

The stability condition can now be investigated by mapping
the complexV plane onto the right-hand side of Eq.~28!,
denoted asR~V!. The plot of the functionR~V! on the com-
plex plane for realV is illustrated in Fig. 1. The signs of the
areas indicate the sign of the imaginary part ofV, which
would mapR~V! into that particular region. The left-hand
side of Eq.~28!, on the other hand, is purely real and can
easily be shown to lie within the interval 0,~2/l!<1.3 for
any set of nonzero values of the parameters concerned. This
clearly implies that Eq.~28! can be satisfied only ifv has a
negative imaginary part and a nonzero real part, hence the
ion density exhibits damped oscillations around the steady-
state valuen0, for t.t2 . The time evolution of the ion den-
sity, from the moment the beam is injected until the steady
state, is now completely described and illustrated qualita-
tively in Fig. 2.

III. CONCLUSION

In this work, we have studied the time evolution of the
ion density in mirror machines with perpendicular injection,
to investigate the stability of the steady state, subject to
small density perturbations. The time-dependent Vlasov–
Boltzmann equation is written with the explicit expressions
for the collisional, ionization, and charge exchange pro-
cesses, and solved analytically for the typical ranges of pa-

rameters involved. To the best of our knowledge, this is the
only analytical investigation of the problem, with the charge
exchange process being taken into account realistically.

The results obtained imply the existence of three differ-
ent phases in the time evolution of the ion density, from the
moment the beam is injected until the steady state. In the first
phase, the density grows exponentially due to the accumula-
tion of ions supplied by the beam on the initially existing
ions, which gradually shift toward the loss cone. The second
phase starts with a drop in the density, at the time the initially
existing ions leave the system through the loss cone. The
abruptness of the drop depends on the steepness of the initial
distribution. This phase continues with the same exponential
growth, produced by the ionization of the beam, until the
velocity distribution of these ions broadens down to the loss
cone. Then, the last phase starts, where the loss mechanism
begins to compensate the accumulation. Using the Fourier
representation and mapping the complex frequency into the
consequent ‘‘dispersion relation,’’ it is shown that the ion
density finally relaxes to a steady state value through damped
oscillations, confirming the stability of the steady state. It
may therefore be concluded that the kinetic effects pointed
out in the Introduction, as possible reasons to expect the
development of an instability, proved to be effective in con-
verting the exponential-like relaxation to an oscillatory one,
but quantitatively inadequate for causing an instability.
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